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Goals for this tutorial 

1.  Get introduced to parallel programming for shared memory 
and distributed systems 

2.  Learn practical knowledge of MPI communication library 
3.  Learn practical knowledge of OpenMP directives for shared 

memory parallelism 
4.  Learn how to use both MPI and OpenMP in the same parallel 

application  



Typical cluster architecture 



Why Parallel Computing? 

•  Want to speed up your calculation. 
•  Your problem is too large for a single node 
•  Want to use those extra cores on your multicore processor 
•  Solution: 

–  Split the work between several processor cores so that they can work in 
parallel 

–  Exchange data between them when needed 
•  How? 

–  Compiler auto-prallelization or OpenMP directives on shared memory 
node 

–  Message Passing Interface (MPI) on distributed memory systems 
(works also on shared memory nodes) 



Languages and libraries for parallel 
computing 

•  Multithreading or “shared memory parallelism” 
–  Directive-base OpenMP (deceptively easy) www.openmp.org (!$OMP DO) 
–  POSIX pthread programming (explicit parallelism, somewhat harder than MPI 

since one needs to manage threads access to memory). 
–  GPGPU (General-Purpose Graphical Processing Unit) programming with CUDA 

(NVidia) or OpenCL (similar to CUDA but more difficult). 
•  PGAS global address space SPMD languages (using GASNet layer or other) 

–  Efficient single-sided communication on globally-addressable memory 
–  Co-array FORTRAN 

•  Example: xarray(100,200)[*] where * is a process number 
•  “puts” and “gets” directly to and from remote memory via the network with 

little or no involvement from the CPU 
•  Works best on a specialized network, such as Cray XE6 Gemini interconnect 

–  UPC (http://upc.lbl.gov/): Similar to co-array Fortran but for C. 
•  MPI for distributed-memory parallelism (runs everywhere except GPUs) 



Let’s start with MPI… 



Reason to use MPI: Scalability and portability 

Cray XT5 Jaguar at the Oak Ridge 
Leadership Class Facility (OLCF) 
 224,256 processing cores 

Blue Gene/P Intrepid at the 
Argonne Leadership Class 
Facility (ALCF) 
 163,840 processing cores 



MPI 

•  Context: distributed memory parallel computers 
–  Each processor has its own memory and cannot access the memory of 

other processors 
–  Any data to be shared must be explicitly transmitted from one to 

another 
•  Most message passing programs use the single program 

multiple data (SPMD) model 
–  Each processor executes the same set of instructions 
–  Parallelization is achieved by letting each processor operate on a 

different piece of data 
–  Not to be confused with SIMD: Single Instruction Multiple Data a.k.a 

vector computing 



How to split the work between processors? 

•  Most widely used method for grid-based calculations: 
–  DOMAIN DECOMPOSITION 

•  Split particles in particle-in-cell (PIC) or molecular dynamics 
codes. 

•  Split arrays in PDE solvers 
•  etc… 
•  Keep it LOCAL 



What is MPI? 

•  MPI stands for Message Passing Interface. 
•  It is a message-passing specification, a standard, for the 

vendors to implement. 
•  In practice, MPI is a set of functions (C) and subroutines 

(Fortran) used for exchanging data between processes. 
•  An MPI library exists on most, if not all, parallel computing 

platforms so it is highly portable. 
•  The scalability of MPI is not limited by the number of 

processors/cores on one computation node, as opposed to 
shared memory parallel models. 



MPI standard 

•  MPI standard is a specification of what MPI is and how it 
should behave. Vendors have some flexibility in the 
implementation (e.g. buffering, collectives, topology 
optimizations, etc.). 

•   This tutorial focuses on the functionality introduced in the 
original MPI-1 standard 

•  MPI-2 standard introduced additional support for 
–  Parallel I/O (many processes writing to a single file). Requires a 

parallel filesystem to be efficient 
–  One-sided communication: MPI_Put, MPI_Get 
–  Dynamic Process Management 



How much do I need to know? 

•  MPI is small (6 functions)  
–  Many parallel programs can be written with just 6 basic functions.  

•  MPI is large (125 functions)  
–  MPI's extensive functionality requires many functions  
–  Number of functions not necessarily a measure of complexity  

•  MPI is just right  
–  One can access flexibility when it is required. 
–  One need not master all parts of MPI to use it.  



References 

•  http://www.mpi-forum.org (location of the MPI standard) 
•  http://www.llnl.gov/computing/tutorials/mpi/ 
•  http://www.nersc.gov/nusers/help/tutorials/mpi/intro/ 
•  http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html 
•  http://www-unix.mcs.anl.gov/mpi/tutorial/ 

•  MPI on Linux clusters: 
–  MPICH (http://www-unix.mcs.anl.gov/mpi/mpich/) 
–  Open MPI (http://www.open-mpi.org/) 

•  Book: 
–  Using MPI “Portable Parallel Programming with the Message-Passing Interface” by 

William Gropp, Ewing Lusk, and Anthony Skjellum 
–  Using MPI-2  “Advanced Features of the Message-Passing Interface” 



MPI Communicators 

•  A communicator is an identifier associated with a group of 
processes 
–  Each process has a unique rank within a specific communicator (the 

rank starts from 0 and has a maximum value of (nprocesses-1) ). 
–  Internal mapping of processes to processing units 
–  Always required when initiating a communication by calling an MPI 

function or routine. 
•  Default communicator MPI_COMM_WORLD, which 

contains all available processes. 
•  Several communicators can coexist 

–  A process can belong to different communicators at the same time, but 
has a unique rank in each communicator 



A sample MPI program in Fortran 90 

Program mpi_code 
  ! Load MPI definitions 
    use mpi (or include mpif.h) 

  ! Initialize MPI 
    call MPI_Init(ierr) 
  ! Get the number of processes  
    call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr) 
  ! Get my process number (rank) 
    call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr) 

    Do work and make message passing calls… 

  ! Finalize 
    call MPI_Finalize(ierr) 

end program mpi_code 



Header file 

Program mpi_code 
  ! Load MPI definitions 
    use mpi 

  ! Initialize MPI 
    call MPI_Init(ierr) 
  ! Get the number of processes  
    call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr) 
  ! Get my process number (rank) 
    call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr) 

    Do work and make message passing calls… 

  ! Finalize 
    call MPI_Finalize(ierr) 

end program mpi_code 

• Defines MPI-related parameters and 
functions 

• Must be included in all routines 
calling MPI functions 

• Can also use include file: 
              include mpif.h 



Initialization 

Program mpi_code 
  ! Load MPI definitions 
    use mpi 

  ! Initialize MPI 
    call MPI_Init(ierr) 
  ! Get the number of processes  
    call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr) 
  ! Get my process number (rank) 
    call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr) 

    Do work and make message passing calls… 

  ! Finalize 
    call MPI_Finalize(ierr) 

end program mpi_code 

• Must be called at the beginning of the 
code before any other calls to MPI 
functions 

•  Sets up the communication channels 
between the processes and gives each 
one a rank. 



How many processes do we have? 

Program mpi_code 
  ! Load MPI definitions 
    use mpi 

  ! Initialize MPI 
    call MPI_Init(ierr) 
  ! Get the number of processes  
    call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr) 
  ! Get my process number (rank) 
    call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr) 

    Do work and make message passing calls… 

  ! Finalize 
    call MPI_Finalize(ierr) 

end program mpi_code 

•  Returns the number of processes available 
under MPI_COMM_WORLD communicator 

•  This is the number used on the mpiexec (or 
mpirun) command: 

          mpiexec –n nproc a.out 



What is my rank? 

Program mpi_code 
  ! Load MPI definitions 
    use mpi 

  ! Initialize MPI 
    call MPI_Init(ierr) 
  ! Get the number of processes  
    call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr) 
  ! Get my process number (rank) 
    call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr) 

    Do work and make message passing calls… 

  ! Finalize 
    call MPI_Finalize(ierr) 

end program mpi_code 

•  Get my rank among all of the nproc processes 
under MPI_COMM_WORLD 

•  This is a unique number that can be used to 
distinguish this process from the others  



Termination 

Program mpi_code 
  ! Load MPI definitions 
    use mpi (or include mpif.h) 

  ! Initialize MPI 
    call MPI_Init(ierr) 
  ! Get the number of processes  
    call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr) 
  ! Get my process number (rank) 
    call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr) 

    Do work and make message passing calls… 

  ! Finalize 
    call MPI_Finalize(ierr) 

end program mpi_code 

• Must be called at the end of the 
properly close all communication 
channels 

• No more MPI calls after finalize 



A sample MPI program in C 

#include "mpi.h" 
int main( int argc, char *argv[] ) 
{ 
  int nproc, myrank; 
  /* Initialize MPI */ 
    MPI_Init(&argc,&argv); 
  /* Get the number of processes */  
    MPI_Comm_size(MPI_COMM_WORLD,&nproc); 
  /* Get my process number (rank) */ 
    MPI_Comm_rank(MPI_COMM_WORLD,&myrank); 

    Do work and make message passing calls… 

  /* Finalize */ 
    MPI_Finalize(); 
 return 0; 
} 



Compiling and linking an MPI code 

•  Need to tell the compiler where to find the MPI include files 
and how to link to the MPI libraries. 

•  Fortunately, most MPI implementations come with scripts that 
take care of these issues: 
–  mpicc mpi_code.c –o a.out 
–  mpiCC mpi_code_C++.C –o a.out 
–  mpif90 mpi_code.f90 –o a.out 

•  Two widely used (and free) MPI implementations on Linux 
clusters are: 
–  MPICH (http://www-unix.mcs.anl.gov/mpi/mpich) 
–  OPENMPI  (http://www.openmpi.org) 



Makefile 

•  Always a good idea to have a Makefile 

%cat Makefile 
CC=mpicc 
CFLAGS=-O 

% : %.c 
 $(CC) $(CFLAGS) $< -o $@ 



How to run an MPI executable 

•  The implementation supplies scripts to launch the MPI parallel 
calculation, for example: 
  mpirun –np #proc a.out 

     mpiexec –n #proc a.out 
     aprun –size #proc a.out (Cray XT) 
•  A copy of the same program runs on each processor core 

within its own process (private address space). 
•  Each process works on a subset of the problem. 
•  Exchange data when needed 

–  Can be exchanged through the network interconnect 
–  Or through the shared memory on SMP machines (Bus?) 

•  Easy to do coarse grain parallelism = scalable 

MPICH, OPENMPI 



mpirun and mpiexec 

•  Both are used for starting an MPI job 
•  If you don’t have a batch system, use mpirun 

   mpirun –np #proc –machinefile mfile a.out >& out < in & 

   %cat mfile 
    machine1.princeton.edu           machine1.princeton.edu 
    machine2.princeton.edu    OR     machine1.princeton.edu 
    machine3.princeton.edu           machine1.princeton.edu 
    machine4.princeton.edu           machine1.princeton.edu 

         1 MPI process per host                                4 MPI processes on same host 

•  PBS batch system usually takes care of arguments to mpiexec 



Batch System: PBS primer 

•  Submit a job script:  qsub script 
•  Check status of jobs:  qstat –a   (for all jobs) 
•  Stop a job:  qdel job_id 

###  --- PBS SCRIPT  --- 
#PBS –l nodes=4:ppn=2,walltime=02:00:00 
#PBS –q dque 
#PBS –V 
#PBS –N job_name 
#PBS –m abe 
cd $PBS_O_WORKDIR 
mpiexec a.out 



Basic MPI calls to exchange data 

•  Point-to-Point communications 
–  Only 2 processes exchange data 
–  It is the basic operation of all MPI calls 

•  Collective communications 
–  A single call handles the communication between all the processes in a 

communicator 
–  There are 3 types of collective communications 

•  Data movement (e.g. MPI_Bcast) 
•  Reduction (e.g. MPI_Reduce) 
•  Synchronization: MPI_Barrier  



Point-to-point communication 

Point to point:   2 processes at a time 

    MPI_Send(buf,count,datatype,dest,tag,comm,ierr) 

    MPI_Recv(buf,count,datatype,source,tag,comm,status,ierr) 

MPI_Sendrecv(sendbuf,sendcount,sendtype,dest,sendtag, 
    recvbuf,recvcount,recvtype,source,recvtag,comm,status,ierr) 

where the datatypes are:  
FORTRAN: MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION, 
MPI_COMPLEX,MPI_CHARACTER, MPI_LOGICAL, etc… 

C : MPI_INT, MPI_LONG, MPI_SHORT, MPI_FLOAT, MPI_DOUBLE, etc… 

Predefined Communicator: MPI_COMM_WORLD 



Collective communication: 
Broadcast 

•  One process (called “root”) sends data to all the other 
processes in the same communicator 

•  Must be called by all the processes with the same arguments 

MPI_Bcast(buffer,count,datatype,root,comm,ierr) 

P0 A B C D 

P1 

P2 

P3 

P0 A B C D 

P1 A B C D 

P2 A B C D 

P3 A B C D 

Broadcast 



Collective communication: 
Gather 

•  One root process collects data from all the other processes in the same 
communicator 

•  Must be called by all the processes in the communicator with the same 
arguments 

•  “sendcount” is the number of basic datatypes sent, not received (example 
above would be sendcount = 1) 

•  Make sure that you have enough space in your receiving buffer! 

MPI_Gather(sendbuf,sendcount,sendtype,recvbuf,recvcount, 
            recvtype,root,comm,ierr) 

P0 A 

P1 B 

P2 C 

P3 D 

P0 A B C D 

P1 

P2 

P3 

Gather 



Collective communication: 
Gather to All 

•  All processes within a communicator collect data from each other and end 
up with the same information 

•  Must be called by all the processes in the communicator with the same 
arguments 

•  Again, sendcount is the number of elements sent 

MPI_Allgather(sendbuf,sendcount,sendtype,recvbuf,recvcount, 
              recvtype,comm,info) 

P0 A 

P1 B 

P2 C 

P3 D 

P0 A B C D 

P1 A B C D 

P2 A B C D 

P3 A B C D 

Allgather 



Collective communication: 
Reduction 

•  One root process collects data from all the other processes in the same 
communicator and performs an operation on the received data 

•  Called by all the processes with the same arguments 
•  Operations are: MPI_SUM, MPI_MIN, MPI_MAX, MPI_PROD, logical 

AND, OR, XOR, and a few more 
•  User can define own operation with MPI_Op_create() 

MPI_Reduce(sendbuf,recvbuf,count,datatype,op,root,comm,ierr) 

P0 A 

P1 B 

P2 C 

P3 D 

Reduce (+) 

P0 A+B+C+D 

P1 

P2 

P3 



Collective communication: 
Reduction to All 

•  All processes within a communicator collect data from all the 
other processes and performs an operation on the received data 

•  Called by all the processes with the same arguments 
•  Operations are the same as for MPI_Reduce 

MPI_Allreduce(sendbuf,recvbuf,count,datatype,op,comm,ierr) 

P0 A 

P1 B 

P2 C 

P3 D 

Allreduce (+) 

P0 A+B+C+D 

P1 A+B+C+D 

P2 A+B+C+D 

P3 A+B+C+D 



More MPI collective calls 

One “root” process send a different piece of the data to each one of the other 
Processes (inverse of gather) 
MPI_Scatter(sendbuf,sendcnt,sendtype,recvbuf,recvcnt, 
            recvtype,root,comm,ierr) 

Each process performs a scatter operation, sending a distinct message to all 
the processes in the group in order by index.  
MPI_Alltoall(sendbuf,sendcount,sendtype,recvbuf,recvcnt, 
             recvtype,comm,ierr) 

Synchronization: When necessary, all the processes within a communicator can 
be forced to wait for each other although this operation can be expensive  
MPI_Barrier(comm,ierr) 



Blocking communications 

•  The call waits until the data 
transfer is done 
–  The sending process waits until 

all data are transferred to the 
system buffer 

–  The receiving process waits until 
all data are transferred from the 
system buffer to the receive 
buffer 

•  All collective communications 
are blocking 



Non-blocking 

•  Returns immediately after 
the data transferred is 
initiated 

•  Allows to overlap 
computation with 
communication 

•  Need to be careful though 
–  When send and receive 

buffers are updated before 
the transfer is over, the 
result will be wrong 



Non-blocking send and receive 

Point to point: 

    MPI_Isend(buf,count,datatype,dest,tag,comm,request,ierr) 

    MPI_Irecv(buf,count,datatype,source,tag,comm,request,ierr) 

The functions MPI_Wait and MPI_Test are used to complete a nonblocking communication 

    MPI_Wait(request,status,ierr) 

    MPI_Test(request,flag,status,ierr) 

MPI_Wait returns when the operation identified by “request” is complete. This is a non-
local operation. 

MPI_Test returns “flag = true” if the operation identified by “request” is complete. 
Otherwise it returns “flag = false”. This is a local operation. 



How to time your MPI code 

•  Several possibilities but MPI provides an easy to use function 
called “MPI_Wtime()”. It returns the number of seconds since 
an arbitrary point of time in the past. 

     FORTRAN: double precision MPI_WTIME() 
           C: double MPI_Wtime() 

     starttime=MPI_WTIME() 
       … program body … 
     endtime=MPI_WTIME() 
     elapsetime=endtime-starttime 



Debugging tips 

Use “unbuffered” writes to do “printf-debugging” and always write out the 
process id: 
   C:       fprintf(stderr,”%d: …”,myid,…); 
   Fortran: write(0,*)myid,’: …’ 

If the code detects an error and needs to terminate, use MPI_ABORT. The 
errorcode is returned to the calling environment so it can be any number. 
   C:       MPI_Abort(MPI_Comm comm, int errorcode); 
   Fortran: call MPI_ABORT(comm, errorcode, ierr) 

To detect a “NaN” (not a number): 
   C:       if (var != var) 
   Fortran: if (var /= var) 

Use a parallel debugger such as Totalview or DDT if available 



Good MPI web sites (again) 

•  http://www.mpi-forum.org (location of the MPI standard) 
•  http://www.llnl.gov/computing/tutorials/mpi/ 
•  http://www.nersc.gov/nusers/help/tutorials/mpi/intro/ 
•  http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html 
•  http://www-unix.mcs.anl.gov/mpi/tutorial/ 

•  MPI on Linux clusters: 
–  MPICH (http://www-unix.mcs.anl.gov/mpi/mpich/) 
–  Open MPI (http://www.open-mpi.org/) 



Good book for learning MPI 



Work example: calculating π using 
numerical integration 

#include <stdio.h>!
#include <math.h>!
int main( int argc, char *argv[] )!
{!
    int n, myid, numprocs, i;!
    double PI25DT = 3.141592653589793238462643;!
    double mypi, pi, h, sum, x;!
    FILE *ifp;!

    ifp = fopen("ex4.in","r");!
    fscanf(ifp,"%d",&n);!
    fclose(ifp);!
    printf("number of intervals = %d\n",n);!

    h   = 1.0 / (double) n;!
    sum = 0.0;!
    for (i = 1; i <= n; i++) {!
        x = h * ((double)i - 0.5);!
        sum += (4.0 / (1.0 + x*x));!
    }!
    mypi = h * sum;!

    pi = mypi;!
    printf("pi is approximately %.16f, Error is %.16f\n",!
            pi, fabs(pi - PI25DT));!

    return 0;!
}!

C version 



Work example: FORTRAN version 
      program fpi!
      double precision  PI25DT!
      parameter        (PI25DT = 3.141592653589793238462643d0)!
      double precision  mypi, pi, h, sum, x, f, a!
      integer n, myid, numprocs, i, j, ierr!

      open(12,file='ex4.in',status='old')!
      read(12,*) n!
      close(12)!
      write(*,*)'  number of intervals=',n!
c!
      h = 1.0d0/n!
      sum  = 0.0d0!
      do i = 1, n!
         x = h * (dble(i) - 0.5d0)!
         sum = sum + 4.d0/(1.d0 + x*x)!
      enddo!
      mypi = h * sum!
c!
      pi = mypi!
      write(*,*)' pi=',pi,'  Error=',abs(pi - PI25DT)!

      end!



OpenMP: a directive-based approach to 
shared memory parallelism 

http://www.openmp.org 



What is OpenMP? 

•  OpenMP is:  
–  An Application Program Interface (API) that may be used to explicitly 

direct multi-threaded, shared memory parallelism  
–  Comprised of three primary API components:  

•  Compiler Directives  
•  Runtime Library Routines  
•  Environment Variables  

–  Portable:  
•  The API is specified for C/C++ and Fortran  
•  Multiple platforms have been implemented including most Unix platforms 

and Windows  
–  Standardized:  

•  Jointly defined and endorsed by a group of major computer hardware and 
software vendors  

•  Expected to become an ANSI standard later? 



What are directives? 

•  In C or C++, preprocessor 
statements ARE directives. They 
“direct” the preprocessing stage. 

•  Parallelization directives tell the 
compiler to add some machine 
code so that the next set of 
instructions will be distributed to 
several processors and run in 
parallel. 

•  In FORTRAN, directives are 
special purpose comments 
inserted right before the loop or 
region to parallelize. 

C: 
#pragma omp parallel for private(idx) 
for (idx=1; idx <= n; idx++) { 
   a[idx] = b[idx] + c[idx];  
} 

Fortran: 
!$omp parallel do private(idx) 
do idx=1,n 
   a(idx) = b(idx) + c(idx) 
enddo  



Telling the compiler to process the 
directives 

•  Most, if not all compilers can process OpenMP directives and generate 
appropriate multi-threaded code. 

•  Be careful though. Some vendors are selling different versions of their 
compilers and the OpenMP support can come under a “parallel” or “high 
performance” version. 

•  This is achieved by using an option that instructs the compiler to activate 
and interpret all OpenMP directives. Here are a few examples: 
–  PGI compiler:  pgf90 –mp     and   pgcc –mp 
–  IBM xlf:  xlf90_r -qsmp=omp   and   xlc_r –qsmp=omp 
–  Linux gcc:  gcc –fopenmp 
–  Intel (Linux):  icc –openmp    and   ifort -openmp 

•  It is important to use the “thread-safe” versions of the XL compilers on 
the IBM systems (Blue Gene and Power systems). They have an extra 
“_r” added to their names (xlc_r, xlf90_r)  

•  Several Fortran OpenMP directives come in pairs and have the form: 



Shared memory parallelism 

•  Multi-threaded parallelism (parallelism-on-demand) 
•  Fork-and-Join  Model (although we say “spawn” for 

threads and “fork” for processes). 

Spawn 
threads 

Parallel region Parallel region 

Serial 
region 

Serial 
region 

Serial 
region 

Spawn 
threads 

Destroy 
threads 

Destroy 
threads 



Process and thread: what’s the difference? 

•  You need an existing process to create a thread. 
•  Each process has at least one thread of execution. 
•  A process has its own virtual memory space that cannot be 

accessed by other processes running on the same or on a 
different processor. 

•  All threads created by a process share the virtual address space 
of that process. They read and write to the same address space 
in memory. They also share the same process and user ids, file 
descriptors, and signal handlers. However, they have their own 
program counter value and stack pointer, and can run 
independently on several processors. 



Amdahl’s law of scalability 

•  For p=0.8 the max 
speedup is 5!! 

•  The goal is to minimize 
the time spent in the 
serial regions 

where n is the number of 
processors and p the 
fraction of parallel 
work 



Goals of OpenMP 

•  Provide a standard among a variety of shared memory architectures/
platforms  

•  Establish a simple and limited set of directives for programming shared 
memory machines. Significant parallelism can be implemented by using 
just 3 or 4 directives.  

•  Provide capability to incrementally parallelize a serial program, unlike 
message-passing libraries which typically require an all or nothing 
approach  

•  Provide the capability to implement both coarse-grain and fine-grain 
parallelism. 
–  Coarse-grain = domain decomposition. 
–  Fine-grain = loop-level parallelism. 

•  Supports Fortran (77, 90, and 95), C, and C++ 
•  Public forum for API and membership  



Example of OpenMP code structure 

In FORTRAN: 
       PROGRAM HELLO  
              INTEGER VAR1, VAR2, VAR3 
              Serial code . . .  
              Beginning of parallel section. Fork a team of threads.  
             Specify variable scoping  
!$OMP PARALLEL PRIVATE(VAR1, VAR2) SHARED(VAR3) 
             Parallel section executed by all threads . . .  
            All threads join master thread and disband  
!$OMP END PARALLEL 
             Resume serial code . . .  
       END  



Example of code structure in C 

In C: 
#include <omp.h> 
main () { 
  int var1, var2, var3; 
 Serial code . . . 
 Beginning of parallel section. Fork a team of threads. 
 Specify variable scoping  
#pragma omp parallel private(var1, var2) shared(var3) 
 {  
    Parallel section executed by all threads . . . 
   All threads join master thread and disband  
 } 
 Resume serial code . . .  
}  



Directives format in Fortran 

sentinel directive-name [clause…] 
–  All Fortran OpenMP directives must begin with a sentinel. The 

accepted sentinels depend upon the type of Fortran source. 
Possible sentinels are:  !$OMP, C$OMP, *$OMP 

–  Just use !$OMP and you will be fine… 
–  The sentinel must be followed by a valid directive name. 
–  Clauses are optional and can be in any order, and repeated as 

necessary unless otherwise restricted. 
–  All Fortran fixed form rules for line length, white space, 

continuation and comment columns apply for the entire directive 
line  

!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(BETA,PI)  



Fortran fixed form source 

•  Fixed Form Source:  
–  !$OMP C$OMP *$OMP are accepted sentinels and must start in 

column 1  
–  All Fortran fixed form rules for line length, white space, 

continuation and comment columns apply for the entire directive 
line  

–  Initial directive lines must have a space/zero in column 6.  
–  Continuation lines must have a non-space/zero in column 6.    

The following formats are equivalent: 

!234567 

!$OMP PARALLEL DO SHARED(A,B,C) 

C$OMP PARALLEL DO C$OMP+SHARED
(A,B,C) 



Fortran free form source 

•  Free Form Source:  
–  !$OMP is the only accepted sentinel. Can appear in any column, but 

must be preceded by white space only.  
–  All Fortran free form rules for line length, white space, continuation 

and comment columns apply for the entire directive line  
–  Initial directive lines must have a space after the sentinel.  
–  Continuation lines must have an ampersand as the last non-blank 

character in a line. The following line must begin with a sentinel and 
then the continuation directives. 

!23456789 
    !$OMP PARALLEL DO & 
          !$OMP SHARED(A,B,C) 
  !$OMP PARALLEL & 
    !$OMP&DO SHARED(A,B,C) 



C / C++ Directives Format  

•  #pragma omp 
–  Required for all OpenMP C/C++ directives.  

•  directive-name 
–  A valid OpenMP directive. Must appear after the pragma and 

before any clauses.  
•  [clause, ...]  

–  This is optional. Clauses can be in any order, and repeated as 
necessary unless otherwise restricted.  

•  newline  
–  Required. Precedes the structured block which is enclosed by this 

directive.  

#pragma omp parallel default(shared) private(beta,pi) 



General rules for C/C++ format 

•  Directives follow conventions of the C/C++ standards for 
compiler directives  

•  Case sensitive  
•  Only one directive-name may be specified per directive (true 

with Fortran also)  
•  Each directive applies to at most one succeeding statement, 

which must be a structured block.  
•  Long directive lines can be "continued" on succeeding lines by 

escaping the newline character with a backslash ("\") at the 
end of a directive line.  



Conditional compilation: _OPENMP 

•  All OpenMP-compliant implementations define a macro named 
_OPENMP when the OpenMP compiler option is enabled. 

•  This macro can be used to include extra code at the 
preprocessing stage. 

•  Valid for both C and Fortran (requires .F or .F90 extension), 
although one can also use simply !$ in version 2.0 and higher 
for Fortran (see specification). 

#ifdef _OPENMP 
 iam = omp_get_thread_num() + index; 
#endif 

!$ iam = omp_get_thread_num() + & 
!$&      index 



PARALLEL Region Construct  

•  A parallel region is a block of code that will be executed by 
multiple threads. This is the fundamental OpenMP parallel 
construct. 

•  When a thread reaches a PARALLEL directive, it creates a 
team of threads and becomes the master of the team. The 
master is a member of that team and has thread number 0 
within that team.  

•  Starting from the beginning of this parallel region, the code is 
duplicated and all threads will execute that code.  

•  There is an implied barrier at the end of a parallel section. 
Only the master thread continues execution past this point. 



Fortran format of PARALLEL construct 

!$OMP PARALLEL [ clauses … 
    PRIVATE (list) 
    SHARED (list) 
    DEFAULT (PRIVATE | SHARED | NONE) 
    FIRSTPRIVATE (list) 
    REDUCTION ({operator|intrinsic_procedure}: list) 
    COPYIN (list)  
    IF (scalar_logical_expression) 
    NUM_THREADS(scalar_integer_expression) 
    ] 
  block 
!OMP END PARALLEL 



C/C++ format of parallel construct 

#pragma omp parallel [ clauses ] new-line 
 { structured-block } 

Where clauses are: 
    private(list) 
    shared(list) 
    default(shared | none) 
    firstprivate(list) 
    reduction(operator : variable-list) 
    copyin(list) 
    if(scalar_expression) 
    num_threads(scalar_integer_expression) 



Data scope attribute clauses 

•  An important consideration for OpenMP programming is the understanding 
and use of data scoping. 

•  Because OpenMP is based on the shared memory programming model, 
most variables are shared by default between the threads. 

•  Global variables include (shared by default):  
–  Fortran: COMMON blocks, SAVE variables, MODULE variables  
–  C: File scope variables, static  

•  Private variables include (private by default):  
–  Loop index variables  
–  Stack variables in subroutines called from parallel regions  
–  Fortran: Automatic variables within a statement block  



Data scope attributes clauses 

•  The clauses private(list), shared(list), default and firstprivate
(list) allow the user to control the scope attributes of variables for the 
duration of the parallel region in which they appear. The variables are listed 
in brackets right after the clause. 

•  PRIVATE variables behave as follows:  
–  A new object of the same type is declared once for each thread in the team  

–  All references to the original object are replaced with references to the new 
object  

–  Variables declared PRIVATE are uninitialized for each thread  

•  The FIRSTPRIVATE clause combines the behavior of the PRIVATE 
clause with automatic initialization of the variables in its list. Listed 
variables are initialized according to the value of their original objects prior 
to entry into the parallel or work-sharing construct.  



REDUCTION clause 

•  reduction(operator : variable-list) 
•  This clause performs a reduction on the variables that appear in list, with 

the operator or the intrinsic procedure specified. 
•  Operator is one of the following:  

–  Fortran:  +, *, -, .AND., .OR., .EQV., .NEQV., MIN, MAX 
–  C/C++:   +, *, -, &, ^, |, &&, ||, min, max 

•  The following are only available for Fortran: IAND, IOR, IEOR 
•  Variables that appear in a REDUCTION clause must be SHARED in the 

enclosing context. A private copy of each variables in list is created for 
each thread as if the PRIVATE clause had been used. 



COPYIN clause 

•  The COPYIN clause provides a means for assigning the same 
value to THREADPRIVATE variables for all threads in the 
team. 
–  The THREADPRIVATE directive is used to make global file scope 

variables (C/C++) or common blocks (Fortran) local and persistent to a 
thread through the execution of multiple parallel regions.  

•  List contains the names of variables to copy. In Fortran, the 
list can contain both the names of common blocks and named 
variables.  

•  The master thread variable is used as the copy source. The 
team threads are initialized with its value upon entry into the 
parallel construct.  



IF clause 

•  If present, it must evaluate to .TRUE. (Fortran) or non-zero 
(C/C++) in order for a team of threads to be created. 
Otherwise, the region is executed serially by the master thread. 

•  Only a single IF clause can appear on the directive. 



How many threads? 

•  The number of threads in a parallel region is determined by the 
following factors, in order of precedence: 
1.  If the NUM_THREADS clause appears after the directive name, 

the number of threads specified is used for that parallel region.  
2.  Use of the omp_set_num_threads() library function  
3.  Setting of the OMP_NUM_THREADS environment variable  
4.  Implementation default  

•  The threads are numbered from 0 (master thread) to N-1 
•  By default, a program with multiple parallel regions will use the same 

number of threads to execute each region. This behavior can be 
changed to allow the run-time system to dynamically adjust the 
number of threads that are created for a given parallel section. The 
num_threads clause is an example of this. 



Fortran example of PARALLEL construct 
PROGRAM REDUCTION 
  INTEGER tnumber,I,J,K,OMP_GET_THREAD_NUM 
  I=0; J=1; K=5 
  PRINT *, "Before Par Region: I=",I," J=", J," K=",K 

!$OMP PARALLEL PRIVATE(tnumber) REDUCTION(+:I)& 
!$OMP  REDUCTION(*:J) REDUCTION(MAX:K) 
  tnumber=OMP_GET_THREAD_NUM() 
  I = I + tnumber 
  J = J*tnumber 
  K = MAX(K,tnumber) 
  PRINT *, "Thread ",tnumber," I=",I," J=", J," K=",K 
!$OMP END PARALLEL 

  PRINT *, "" 
  print *, "Operator            +     *    MAX" 
  PRINT *, "After Par Region:  I=",I," J=", J," K=",K 
END PROGRAM REDUCTION 



C example of PARALLEL construct 

#include <omp.h> 
main () { 
 int nthreads, tid;  /* Fork a team of threads giving 
                  them their own copies of variables */ 
#pragma omp parallel private(nthreads, tid) 
  {          /* Obtain and print thread id */ 
    tid = omp_get_thread_num(); 
    printf("Hello World from thread = %d\n", tid); 

    /* Only master thread does this */ 
    if (tid == 0){ 
       nthreads = omp_get_num_threads(); 
       printf("Number of threads = %d\n", nthreads); 
    } 
  } /* All threads join master thread and terminate */ 
}  



Work-Sharing Constructs  

•  A work-sharing construct divides the execution of the enclosed 
code region among the members of the team that encounter it.  

•  Work-sharing constructs do not launch new threads  
•  There is no implied barrier upon entry to a work-sharing 

construct, however there is an implied barrier at the end of a 
work sharing construct. 

•  Types of Work-Sharing Constructs:  
–  DO / for - shares iterations of a loop across the team. Represents a type 

of "data parallelism". 
–  SECTIONS - breaks work into separate, discrete sections. Each 

section is executed by a thread. Can be used to implement a type of 
"functional parallelism".  

–  SINGLE - serializes a section of code 
–  WORKSHARE - divides the execution of the enclosed structured 

block into separate units of work 



Work-Sharing Constructs Restrictions 

•  A work-sharing construct must be enclosed dynamically 
within a parallel region in order for the directive to execute in 
parallel.  

•  Work-sharing constructs must be encountered by all members 
of a team or none at all.  

•  Successive work-sharing constructs must be encountered in 
the same order by all members of a team. 



DO/for directive 

•  Purpose: 
–  The DO / for directive specifies that the iterations of the loop 

immediately following it must be executed in parallel by the team. This 
assumes a parallel region has already been initiated, otherwise it 
executes in serial on a single processor.  

•  Restrictions: 
–  The DO loop can not be a DO WHILE loop, or a loop without loop 

control. Also, the loop iteration variable must be an integer and the 
loop control parameters must be the same for all threads.  

–  Program correctness must not depend upon which thread executes a 
particular iteration.  

–  It is illegal to branch out of a loop associated with a DO/for directive. 



Format of DO construct 

!$OMP DO [clause ... 
       SCHEDULE (type [,chunk])  
       ORDERED 
       PRIVATE (list)  
       FIRSTPRIVATE (list)  
       LASTPRIVATE (list)  
       SHARED (list) 
       REDUCTION (operator | intrinsic : list) 
       ]  
   do_loop 

!$OMP END DO [ NOWAIT ]  



(C/C++) Format of “for” construct 

#pragma omp for [clause ...] newline  
 { for-loop } 

Where clauses are: 
    schedule (type [,chunk]) 
    ordered 
    private(list) 
    firstprivate(list) 
    lastprivate(list)  
    shared(list) 
    reduction(operator : variable-list) 
    nowait 



SCHEDULE clause 

•  Describes how iterations of the loop are divided among the 
threads in the team. For both C/C++ and Fortran. 

•  STATIC: 
–   Loop iterations are divided into pieces of size chunk and then statically 

assigned to threads. If chunk is not specified, the iterations are evenly 
(if possible) divided contiguously among the threads.  

•  DYNAMIC:  
–  Loop iterations are divided into pieces of size chunk, and dynamically 

scheduled among the threads; when a thread finishes one chunk, it is 
dynamically assigned another. The default chunk size is 1.  



SCHEDULE clause 

•  GUIDED:  
–  The chunk size is exponentially reduced with each dispatched piece of 

the iteration space. The chunk size specifies the minimum number of 
iterations to dispatch each time.. The default chunk size is 1.  

•  RUNTIME:  
–  The scheduling decision is deferred until runtime by the environment 

variable OMP_SCHEDULE. It is illegal to specify a chunk size for this 
clause.  

•  The default schedule is implementation dependent. 
Implementation may also vary slightly in the way the various 
schedules are implemented. 



DO/for directive clauses 

•  ORDERED: 
–  Must be present when ORDERED directives are enclosed within the 

DO/for directive.  

•  LASTPRIVATE(list) 
–  The LASTPRIVATE clause combines the behavior of the PRIVATE 

clause with a copy from the last loop iteration or section to the original 
variable object.  

–  The value copied back into the original variable object is obtained from 
the last (sequentially) iteration or section of the enclosing construct. 
For example, the team member which executes the final iteration for a 
DO section, or the team member which does the last SECTION of a 
SECTIONS context performs the copy with its own values.  



NOWAIT clause  

•  If specified, then the threads do not synchronize at the end of 
the parallel loop. Threads proceed directly to the next 
statements after the loop. 

•  In C/C++, must be in lowercase: nowait 

•  For Fortran, the END DO directive is optional at the end of the 
loop. 



Fortran example DO directive 
PROGRAM VEC_ADD_DO 
  INTEGER N, CHUNKSIZE, CHUNK, I 
  PARAMETER (N=1000) 
  PARAMETER (CHUNKSIZE=100) 
  REAL A(N), B(N), C(N) 
 ! Some initializations 
  DO I = 1, N 
     A(I) = I * 1.0 
     B(I) = A(I) 
  ENDDO 
  CHUNK = CHUNKSIZE 
 !$OMP PARALLEL SHARED(A,B,C,CHUNK) PRIVATE(I) 
 !$OMP DO SCHEDULE(DYNAMIC,CHUNK) 
  DO I = 1, N 
     C(I) = A(I) + B(I) 
  ENDDO 
 !$OMP END DO NOWAIT 
 !$OMP END PARALLEL 
END  



C/C++ example of “for” directive 
#include <omp.h> 
#define CHUNKSIZE 100 
#define N 1000 
main() 
{ 
 int i, chunk; 
 float a[N], b[N], c[N]; 
 /* Some initializations */ 
 for (i=0; i < N; i++) 
    a[i] = b[i] = i * 1.0; 
 chunk = CHUNKSIZE; 

 #pragma omp parallel shared(a,b,c,chunk) private(i) 
 {  
   #pragma omp for schedule(dynamic,chunk) nowait 
   for (i=0; i < N; i++) 
       c[i] = a[i] + b[i]; 
 } /* end of parallel section */ 
}  



SECTIONS directive 

•  The SECTIONS directive is a non-iterative work-sharing 
construct. It specifies that the enclosed section(s) of code are 
to be divided among the threads in the team.  

•  Independent SECTION directives are nested within a 
SECTIONS directive Each SECTION is executed once by a 
thread in the team. Different sections will be executed by 
different threads. 



Fortran format of SECTIONS construct 

!$OMP SECTIONS [clause ... 
       PRIVATE (list)  
       FIRSTPRIVATE (list)  
       LASTPRIVATE (list)  
       REDUCTION (operator | intrinsic : list) 
       ] 
[!$OMP SECTION] 
   block 

[!$OMP SECTION 
   block ] 
  … 
!$OMP END SECTIONS [ NOWAIT ]  



(C/C++) Format of sections construct 

#pragma omp sections [clause ...] newline  
 { 
 [#pragma omp section newline] 
   structured-block 
 [#pragma omp section newline 
   structured-block ] 
  … 
 } 

Where clauses are: 
    private(list) 
    firstprivate(list) 
    lastprivate(list)  
    reduction(operator : variable-list) 
    nowait 



Fortran example SECTIONS directive 
PROGRAM VEC_ADD_SECTIONS 
  INTEGER N, I 
  PARAMETER (N=1000) 
  REAL A(N), B(N), C(N) 
! Some initializations 
  DO I = 1, N 
    A(I) = I * 1.0 
    B(I) = A(I) 
  ENDDO 
!$OMP PARALLEL SHARED(A,B,C), PRIVATE(I), NUM_THREADS(2) 
!$OMP SECTIONS 
!$OMP SECTION 
   DO I = 1, N/2 
     C(I) = A(I) + B(I) 
   ENDDO 
!$OMP SECTION 
   DO I = 1+N/2, N 
     C(I) = A(I) + B(I) 
   ENDDO 
!$OMP END SECTIONS NOWAIT 
!$OMP END PARALLEL 
END  



C/C++ example of “sections” directive 
#include <omp.h> 
#define N 1000 
main() 
{ 
 int i, chunk; 
 float a[N], b[N], c[N]; 
 /* Some initializations */ 
 for (i=0; i < N; i++) 
    a[i] = b[i] = i * 1.0; 

#pragma omp parallel shared(a,b,c) private(i) num_threads(2) 
  {  
   #pragma omp sections nowait 
     { 
     #pragma omp section 
     for (i=0; i < N/2; i++) 
         c[i] = a[i] + b[i]; 
     #pragma omp section 
     for (i=N/2; i < N; i++) 
         c[i] = a[i] + b[i]; 
     } /* end of sections */ 
  } /* end of parallel section */ 
}  



SINGLE directive  

•  The SINGLE directive specifies that the enclosed code is to be 
executed by only one thread in the team.  

•  May be useful when dealing with sections of code that are not 
thread safe (such as I/O). 

•  Threads in the team that do not execute the SINGLE directive, 
wait at the end of the enclosed code block, unless a nowait (C/
C++) or NOWAIT (Fortran) clause is specified.  

•  Format: 
–  Fortran:  !$OMP SINGLE [clause…] … !$OMP END SINGLE 
–  C/C++: #pragma omp single [clause ...] newline  
–  Clauses: private(list), firstprivate(list), nowait 



Combined Parallel Work-Sharing Constructs:  
PARALLEL DO 

•  This is one of the simplest and most useful constructs for 
fine-grain parallelism. 

PROGRAM VEC_ADD_DO 
  INTEGER N, I 
  PARAMETER (N=1000) 
  REAL A(N), B(N), C(N) 
 ! Some initializations 
 !$OMP PARALLEL DO      !By default, the static schedule 
  DO I = 1, N           !will be used and the loop will 
     A(I) = I * 1.0     !be divided in equal chunks 
     B(I) = A(I) 
  ENDDO    ! No need to put the END DO directive here 

 !$OMP PARALLEL DO SHARED(A,B,C) PRIVATE(I) 
  DO I = 1, N 
     C(I) = A(I) + B(I) 
  ENDDO 
END  



Combined Parallel Work-Sharing Constructs:  
“parallel for” 

#include <omp.h> 
#define N 1000 
main() 
{ 
 int i; 
 float a[N], b[N], c[N]; 

 /* Some parallel initialization */ 
 #pragma omp parallel for 
 for (i=0; i < N; i++) 
    a[i] = b[i] = i * 1.0; 

 #pragma omp parallel for private(i) 
 for (i=0; i < N; i++) 
       c[i] = a[i] + b[i]; 
}  



Synchronization Constructs  

•  Let two threads on two different processors both trying to increment a 
variable x at the same time (assume x is initially 0):  

THREAD 1: 
increment(x) 
 { x = x + 1; } 

THREAD 1: 
10 LOAD A, (x address) 
20 ADD A, 1 
30 STORE A, (x address)  

THREAD 2: 
increment(x) 
 { x = x + 1; } 

THREAD 2: 
10 LOAD B, (x address) 
20 ADD B, 1 
30 STORE B, (x address)  

One possible execution sequence:  
1.  Thread 1 loads the value of x into 

register A.  
2.  Thread 2 loads the value of x into 

register B.  
3.  Thread 1 adds 1 to register A 

4. Thread 2 adds 1 to register B  
5. Thread 1 stores register A at 

location x  
6. Thread 2 stores register B at 

location x  
The resultant value of x will be 1, not 

2 as it should be.  



Synchronization Constructs  

•  To avoid the situation shown on the previous slide, the 
increment of x must be synchronized between the two threads 
to insure that the correct result is produced.  

•  OpenMP provides a variety of Synchronization Constructs that 
control how the execution of each thread proceeds relative to 
other team threads: 
–  OMP MASTER 
–  OMP CRITICAL 
–  OMP BARRIER 
–  OMP ATOMIC 
–  OMP FLUSH 
–  OMP ORDERED 



Example… 

real(8):: density(mzeta,mgrid) 
density=0. 

  do m=1,me 
     kk=kzelectron(m) 
     ij=jtelectron0(m) 
     density(kk,ij) = density(kk,ij) + wzelectron(m) 
  enddo 

What happens when trying to parallelize this loop with OpenMP? 

 Need to protect updates to density array! 



One solution… 

real(8) :: density(mzeta,mgrid),dnitmp(mzeta,mgrid) 

!$omp parallel private(dnitmp) 
  dnitmp=0.   ! Set array elements to zero 
!$omp do private(m,kk,ij) 
   do m=1,me 
      kk=kzelectron(m) 
      ij=jtelectron0(m) 
      dnitmp(kk,ij) = dnitmp(kk,ij) + wzelectron(m) 
   enddo 

!$omp critical 
  do ij=1,mgrid 
     do kk=1,mzeta 
        density(kk,ij) = density(kk,ij) + dnitmp(kk,ij) 
     enddo 
  enddo 
!$omp end critical 
!$omp end parallel 



THREADPRIVATE directive 

•  The THREADPRIVATE directive is used to make global file 
scope variables (C/C++) or Fortran common blocks and 
modules local and persistent to a thread through the execution 
of multiple parallel regions.  

•  The directive must appear after the declaration of listed 
variables/common blocks. Each thread then gets its own copy 
of the variable/common block, so data written by one thread is 
not visible to other threads.  

•  Format: 
–  Fortran:  !$OMP THREADPRIVATE (/cb/, …) 
–  C/C++:  #pragma omp threadprivate (list) 



THREADPRIVATE directive 

•  On first entry to a parallel region, data in THREADPRIVATE 
variables, common blocks, and modules should be assumed 
undefined, unless a COPYIN clause is specified in the 
PARALLEL directive. 

•  THREADPRIVATE variables differ from PRIVATE variables 
because they are able to persist between different parallel 
sections of a code. 

•  Data in THREADPRIVATE objects are guaranteed to persist 
only if the dynamic threads mechanism is "turned off" and the 
number of threads in different parallel regions remains 
constant. The default setting of dynamic threads is undefined 
(although usually “static” in practice). 



Fortran example of THREADPRIVATE 

      PROGRAM THREADPRIV 
      INTEGER ALPHA(10), BETA(10), I 
      COMMON /A/ ALPHA 
!$OMP THREADPRIVATE(/A/)  
C     Explicitly turn off dynamic threads 
      CALL OMP_SET_DYNAMIC(.FALSE.)  
C     First parallel region  
!$OMP PARALLEL PRIVATE(BETA, I) 
      DO I=1,10 
         ALPHA(I) = I 
         BETA(I) = I 
      END DO  
!$OMP END PARALLEL  
C     Second parallel region  
!$OMP PARALLEL 
      PRINT *, 'ALPHA(3)=',ALPHA(3), ' BETA(3)=',BETA(3)  
!$OMP END PARALLEL  
      END  



C/C++ example of threadprivate construct 
#include <omp.h> 

int alpha[10], beta[10], i; 
#pragma omp threadprivate(alpha) 

main() { 
/* Explicitly turn off dynamic threads */ 
 omp_set_dynamic(0); 

/* First parallel region */ 
 #pragma omp parallel private(i,beta) 
 for (i=0; i < 10; i++) 
    alpha[i] = beta[i] = i; 

/* First parallel region */ 
 #pragma omp parallel 
 printf(“alpha[3]= %d and beta[3]= %d\n”,alpha[3],beta[3]); 

}  



OpenMP library routines 

•  The OpenMP standard defines an API for library calls that perform a 
variety of functions:  
–  Query the number of threads/processors, set number of threads to use  
–  General purpose locking routines (semaphores)  
–  Set execution environment functions: nested parallelism, dynamic 

adjustment of threads.  
•  For C/C++, it is necessary to specify the include file "omp.h".  
•  For the Lock routines/functions:  

–  The lock variable must be accessed only through the locking routines  
–  For Fortran, the lock variable should be of type integer and of a kind large 

enough to hold an address.  
–  For C/C++, the lock variable must have type omp_lock_t or type 

omp_nest_lock_t, depending on the function being used.  



OMP_SET_NUM_THREADS  
•  Sets the number of threads that will be used in the next parallel region.  
•  Format:  

–  Fortran     
•  SUBROUTINE OMP_SET_NUM_THREADS(scalar_integer_expression)  

–  C/C++  
•  void omp_set_num_threads(int num_threads)  

•    Notes & Restrictions:  
•  The dynamic threads mechanism modifies the effect of this routine.  

–  Enabled: specifies the maximum number of threads that can be used for any 
parallel region by the dynamic threads mechanism.  

–  Disabled: specifies exact number of threads to use until next call to this routine.  
•  This routine can only be called from the serial portions of the code  
•  This call has precedence over the OMP_NUM_THREADS environment 

variable  



OMP_GET_NUM_THREADS  

•  Purpose:  
–  Returns the number of threads that are currently in the team executing 

the parallel region from which it is called.  

•  Format:  
–  Fortran  

•  INTEGER FUNCTION OMP_GET_NUM_THREADS()  
–  C/C++ 

•  int omp_get_num_threads(void)  

•  Notes & Restrictions:  
–  If this call is made from a serial portion of the program, or a nested 

parallel region that is serialized, it will return 1.  
–  The default number of threads is implementation dependent.  



OMP_GET_THREAD_NUM  

•  Returns the thread number of the thread, within the team, 
making this call. This number will be between 0 and 
OMP_GET_NUM_THREADS-1. The master thread of the 
team is thread 0  

•  Format:  
–  Fortran 

•  INTEGER FUNCTION OMP_GET_THREAD_NUM() 
–  C/C++ 

•  int omp_get_thread_num(void)  

•  Notes & Restrictions:  
–  If called from a nested parallel region, or a serial region, this function 

will return 0.  



Example of omp_get_thread_num 

CORRECT: 

PROGRAM HELLO 

  INTEGER TID, OMP_GET_THREAD_NUM 

!$OMP PARALLEL PRIVATE(TID) 
    TID = OMP_GET_THREAD_NUM() 
    PRINT *, 'Hello World from thread = ', TID ...  
!$OMP END PARALLEL 

END  

INCORRECT: 
•  TID must be PRIVATE 

PROGRAM HELLO 

  INTEGER TID, OMP_GET_THREAD_NUM 

!$OMP PARALLEL 
    TID = OMP_GET_THREAD_NUM() 
    PRINT *, 'Hello World from thread = ', 
TID ...  

!$OMP END PARALLEL 

END  



Other functions and subroutines 

•  OMP_GET_MAX_THREADS() 
–  Returns the maximum value that can be returned by a call to the 

OMP_GET_NUM_THREADS function.  

•  OMP_GET_NUM_PROCS() 
–  Returns the number of processors that are available to the program. 

•  OMP_IN_PARALLEL 
–  May be called to determine if the section of code which is executing is 

parallel or not.  



More functions… 

•  OMP_SET_DYNAMIC() 
–  Enables or disables dynamic adjustment (by the run time system) of the 

number of threads available for execution of parallel regions.  

•  OMP_GET_DYNAMIC() 
–  Used to determine if dynamic thread adjustment is enabled or not. 

•  OMP_SET_NESTED() 
–  Used to enable or disable nested parallelism. 

•  OMP_GET_NESTED 
–  Used to determine if nested parallelism is enabled or not. 



OpenMP “locking” functions 

•  OMP_INIT_LOCK() 
–  This subroutine initializes a lock associated with the lock variable. 

•  OMP_DESTROY_LOCK() 
–  This subroutine disassociates the given lock variable from any locks.  

•  OMP_SET_LOCK() 
–  This subroutine forces the executing thread to wait until the specified 

lock is available. A thread is granted ownership of a lock when it 
becomes available.  

•  OMP_UNSET_LOCK() 
–  This subroutine releases the lock from the executing subroutine.  

•  OMP_TEST_LOCK() 
–  This subroutine attempts to set a lock, but does not block if the lock is 

unavailable.  



OpenMP timing functions 

•  OMP_GET_WTIME() 
–  This function returns a double precision value equal to the elapsed 

wallclock time in seconds since some arbitrary time in the past. 
–  The times returned are “per-thread times”. 

•  OMP_GET_WTICK() 
–  This function returns a double precision value equal to the number of 

seconds between successive clock ticks. 

•  Consults the OpenMP specification for more details on all the 
subroutines and functions: 
–  http://www.openmp.org/specs 



OpenMP environment variables 

•  OpenMP provides four environment variables for controlling 
the execution of parallel code.  

•  All environment variable names are uppercase. The values 
assigned to them are not case sensitive. 

•  OMP_SCHEDULE  
–  Applies only to DO, PARALLEL DO (Fortran) and for, parallel for (C/

C++) directives which have their schedule clause set to RUNTIME. 
The value of this variable determines how iterations of the loop are 
scheduled on processors. For example:  

•  setenv OMP_SCHEDULE "guided, 4"  
•  setenv OMP_SCHEDULE "dynamic"  



OpenMP environment variables… 

•  OMP_NUM_THREADS   (the most used…) 
–  Sets the maximum number of threads to use during execution. For 

example:     setenv OMP_NUM_THREADS 8  

•  OMP_DYNAMIC 
–  Enables or disables dynamic adjustment of the number of threads 

available for execution of parallel regions. Valid values are TRUE or 
FALSE. For example:    setenv OMP_DYNAMIC TRUE  

•  OMP_NESTED  (rarely implemented on current systems) 
–  Enables or disables nested parallelism. Valid values are TRUE or 

FALSE. For example:    setenv OMP_NESTED TRUE  



Task: parallelize our π test code with 
OpenMP 

      program fpi!
      double precision  PI25DT!
      parameter        (PI25DT = 3.141592653589793238462643d0)!
      double precision  mypi, pi, h, sum, x, f, a!
      integer n, myid, numprocs, i, j, ierr!

      open(12,file='ex4.in',status='old')!
      read(12,*) n!
      close(12)!
      write(*,*)'  number of intervals=',n!
c!
      h = 1.0d0/n!
      sum  = 0.0d0!
      do i = 1, n!
         x = h * (dble(i) - 0.5d0)!
         sum = sum + 4.d0/(1.d0 + x*x)!
      enddo!
      mypi = h * sum!
c!
      pi = mypi!
      write(*,*)' pi=',pi,'  Error=',abs(pi - PI25DT)!

      end!



Summation ordering issues 

•  What happens when we use a different integrand? such as: 



Books on OpenMP 



References 

•  Excellent tutorial from SC’08 conference posted at: 
–  http://www.openmp.org/mp-documents/omp-hands-on-SC08.pdf 
–  See references within document 

•  More tutorials: 
–  http://static.msi.umn.edu/tutorial/scicomp/general/openMP/index.html 
–  https://computing.llnl.gov/tutorials/openMP/ 

•  See http://openmp.org/wp/resources/ 



Mixing MPI and OpenMP 
together in the same application 



Why use both MPI and OpenMP in the 
same code? 

•  To save memory by not having to replicate data common to all 
processes, not using ghost cells, sharing arrays, etc. 

•  To optimize interconnect bandwidth usage by having only one 
MPI process per NUMA node. 

•  Although MPI generally scales very well it has its limit, and 
OpenMP gives another avenue of parallelism. 

•  Some compilers have now implemented OpenMP-like 
directives to run sections of a code on general-purpose GPU 
(GPGPU). Fine-grain parallelism with OpenMP directives is 
easy to port to GPUs. 

•  Processes are “heavy” while threads are “light” (fast creation 
and context switching).   



Implementing mixed-model 

•  Easiest and safest way: 
–  Coarse grain MPI with fine grain loop-level OpenMP 
–  All MPI calls are done outside the parallel regions 
–  This is always supported 

•  Allowing the master thread to make MPI calls inside a parallel 
region 
–  Supported by most if not all MPI implementations 

•  Allowing ALL threads to make MPI calls inside the parallel 
regions 
–  Requires MPI to be fully thread safe 
–  Not the case for all implementations 
–  Can be tricky… 



Find out the level of support of your MPI library 

int MPI_Init_thread(  int * argc, char ** argv[], 
   int thread_level_required, 

   int * thead_level_provided); 
int MPI_Query_thread(  int * 

thread_level_provided); 
int MPI_Is_main_thread(int * flag); 

MPI-2 “Init” functions for multi-threaded MPI processes: 

•  “Required” values can be: 
•  MPI_THREAD_SINGLE:   Only one thread will execute 
•  MPI_THREAD_FUNNELED: Only master thread will make 

MPI-calls 
•  MPI_THREAD_SERIALIZED:  Multiple threads may make 

MPI-calls, but only one at a time 
•  MPI_THREAD_MULTIPLE:  Multiple threads may call 

MPI,without  restrictions 
•  “Provided” returned value can be less than “required” value  



Compiling and linking mixed code 

•  Just add the “openmp” compiler option to the compile AND 
link lines (if separate from each other): 
–  mpicc –openmp mpi_omp_code.c –o a.out 
–  mpif90 –openmp mpi_omp_code.f90 –o a.out 



Launching a mixed job 

•  Set OMP_NUM_THREADS and then launch job with 
“mpirun” or “mpiexec”  

•  If you have an “UMA-type” node where all the cores have the 
same level of access to memory, use a single MPI process per 
node by using a hostfile (or machinefile) on a cluster 

    export OMP_NUM_THREADS=4    
    mpiexec –n 4 –hostfile mfile a.out >& out < in & 

   %cat mfile 
    machine1.princeton.edu 
    machine2.princeton.edu 
    machine3.princeton.edu 
    machine4.princeton.edu 

•  This job will use 16 cores: 4 MPI processes with 4 OpenMP 
threads each 



How to deal with the batch system 

•  When submitting a job to a batch system, such as PBS, you do 
not know in advance which nodes you will get. 

•  However, that information is stored in $PBS_NODEFILE 
•  If you launch a single MPI process per node you can do: 

     /bin/cat $PBS_NODEFILE | uniq > mfile 

     nprocs=`wc -l mfile | awk '{print $1}’` 

     export OMP_NUM_THREADS=8 

     mpiexec –n $nprocs –hostfile mfile ./mpi_omp_code 

•  Make sure that the number of cores that you are asking for 
equals   nprocs*OMP_NUM_THREADS  



•  On non-uniform memory access (NUMA) nodes, one needs to 
be careful how the memory gets assigned to reach good 
performance. 

•  When in doubt, use 1 MPI process per “NUMA node”  

Watch out for NUMA 

CRAY XE6 node 

NUMA 
node 



Launching a NUMA-aware job on the 
CRAY XE6 

•  Commands to launch a job that uses 1 MPI process per 
NUMA node on the XE6: 

  #PBS -l mppwidth=96 
  #PBS -V 
  #PBS -l walltime=1:00:00 
  cd $PBS_O_WORKDIR 
  export OMP_NUM_THREADS=6 
  aprun -n 16 -d 6 -N 4 -S 1 -ss ./hybrid.x  

•  You can still use a single MPI process per node but should use 
a “first-touch” method to allocate memory close to the threads 



•  The memory structure is complex 
–  Multiple-levels (increasing) 
–  Caches are invaluable but difficult to manage 

•  Some difficulties with data access 
–  Single processor effects 

•  Cache misses and thrashing 
•  TLB misses (TLB = Table Look-aside Buffer) 

–  Multi-processor effects 
•  False Sharing 
•  Required synchronizations 

•  NUMA Systems 
–  Data allocation and distribution 
–  Page misses and migration 

How data move from memory to cpu 

L3 cache 

L2 cache 

L1 cache 

Registers 

Main memory 

FPU 

CPU 


